möbiis

Introduction & Project

Introduction of Mobiis

Introduction of Mobiis machine learning technology Introduction of Mobiis machine learning project

01 History

mobiis

mobiis

01 Vison of MOBIIS Machine Learning

mobiis

• Mobiis has the goal to commercialize a world-class level artificial intelligence technology by applying the technology to these four high-tech fields as follows.

MOBIIS Company Profile 4

02 Machine Learning Business – Nuclear Fusionmobilis

• Mobiis applies artificial intelligence control engine to parts of nuclear fusion control system, searches for the optimal control variable, and offers the system for precise and fast control.

02 Machine Learning Business – Accelerator

mobiis

• In the world, the market for medical and industrial accelerator is expected to growth more actively, not just only for the big accelerator. Mobilis is supposed to offer precise artificial intelligence control system to all kinds of accelerator.

			단위 : 억원			
	Category	Market	Control Market	Supervised		
	Heavy lon	15,000	2,250	ML 포항가속기업구소 Supervised	outputiever	
Do	Heavy Particle	1,950	293	PAL-XFEL	Machine Learning	A CONTRACTOR OF THE OWNER
stic	Heavy Particle	4,500	675	Operating Data	Simulator DNN	
	XFEL		100		MLP CNN	
Glo	Small Accelerator	100,715	15,107			
bal	ILC	90,000	13,500	(Durad	Reinforc	
	Total	212,165	31,925	Bmaa	Learning	
• Accelerator Control System : 30 billion USD			n : 30	Argone MINIONAL LADOLATORY SA D SA D Sa D Sa D Sa D Sa D Sa D Sa D Sa D Sa	Optimizing operation parameter • MOI platform	Fermilab SLAC NATIONAL ACCELERATOR LABORATORY
			/			Control system for optimizing
						parameter by machine learning

02 Machine Learning Business – Bio

- mobiis
- Applying Mobiis' artificial intelligence protein analysis engine to the bottleneck in development of CRISPR and Aptamer, Mobiis offers the solution to search for the optimal library.

02 Machine Learning Business – Finance möbiis

- Our business applies artificial intelligence model to the parts of asset allocation and factor decomposition in the asset management system of financial companies.
- It offers more reliable analysis information than the traditional method of factor decomposition and increases the efficiency of asset management with feedback.
- It gives more rational and accurate benchmark by applying reinforcement learning model to the asset allocation system used for the benchmark of asset distribution and reflecting various market scenario and condition.

Data Preprocessing

möbiis

Introduction & Introduction of Mobiis Project Introduction of Mobiis Introduction of Mobiis

Introduction of Mobiis Introduction of Mobiis machine learning technology Introduction of Mobiis machine learning project

Introduction of MOBIIS Machine Learning Technology

Basic Technology MOI Platform

MOBIIS Interest

 Many AI research enterprises in Korea focus on the field that replaces human perception, such as voice recognition, image recognition, and natural language processing, which is easily adapt to real life. However, Mobiis is concentrating on researching and developing technology that substitutes for human experts' intuition and deduction in the high-tech research field such as big science control.

Basic Idea

• Tabula rasa, which doesn't learn the know-how of human experts

Accelerator control system, nuclear fusion control system, and CRISPR/Aptamer development have the problem which is associated with optimizing more combinations then Go; this field has a complicated interlink but the implicit abstract rules as well, such as standard procedure of Go. Applying the methods used in Alphago Zero, we can use General AI in this field.

	Number of cases
Go	$< 2 * 10^{170}$
Big Science	< 10 ¹⁰⁰
Bio	< 10 ⁴⁰
Asset Distribution	< 10 ³⁰

MOBIIS Company Profile 12

Machine Learning – Mobiis' Approach mobiis

- In the field of Big Science Control System, such as accelerator and nuclear fusion, human experts are difficult to find the optimal control variable due to the complexity of physics model and too many number of combinations(> 10^{100})
- Our business is optimizing by the estimation based on partial simulations and operational know-how during the long period.

- The version of Alphago Lee of Deepmind that played against Lee Sedol in 2015 searched the high-probability winning moves by using human experts' data larger than 10 million games and artificial intelligence technologies based on image recognition.
- Alphago Zero, which is published in Nature on Octbor 2017, won Alphago Lee by not using big data of human experts but only basic rules and its simulation.
- General AI technology can be used in the field that rule exists but optimization is impossible due to many number of combinations.

Introduction of MOBIIS Machine Learning Technology

Basic Technology MOI Platform

05 MOI Platform

• Mobiis finished the development of artificial intelligence platform MOI. We are performing various projects by interconnecting with our GPU machine, Amazon Web Service, and Google Cloud Platforms.

MOI Platform Algorithm

- The method of Alphago Zero is not to calculate the optimal moves based on knowledge of human experts, but to make simulated database by self-play and optimize based on it.
- In order to optimize MCTS algorithm, this method shows that dataset by self-play can be evaluated from random level to the expert's level using Policy Network and Value Network.

MOI Platform Algorithm

mobiis

• The whole reinforcement learning process of Alphago zero, which is the base theory of Mobiis, is summarized as follows.

MOI Platform Operation

mobiis

fields and simulator manufacture

Reinforcement Learning using simulator

real data MOBILS Company Profile 18

möbiis

Introduction & Introduction of Mobiis Project Introduction of Mobiis Introduction of Mobiis

Introduction of Mobiis Introduction of Mobiis machine learning technology Introduction of Mobiis machine learning project

möbiis

Project of MOBIIS Machine Learning

<mark>Bio</mark> Finance Accelerator Nuclear Fusion

The Problem of CRISPR

CRISPR-Cas9 Limitations

sgRNA Efficiency Different sgRNA have difficult-to-predict biochemical efficiencies PAM Sequence Only sgRNA target with an adjacent NGG PAM site can be chosen

<Optimized sgRNA design to maximize activity and minimize off-target effects of crisPr-cas9 >

Other Approach : Eterna Game Approach – Citizen Scientist

mobiis

Empowering citizen scientists to invent medicine

Solve puzzles to design molecular medicines.

Get feedback from real experiments at Stanford's School of Medicine.

0	ill.≣	
(I	c ==	1

Work together to write papers for scientific peer review.

Propose your own puzzles to advance research and **invent medicine**.

www.eternagame.org

Other Approach : Eterna workflow möbiis

A Design interface	B Voting interface	
	Jing's Branches 1 G G A A A G G U Branches G G A A A G C U Squid G G A A A G C U Mat - Branches V1 G G A A A G C A Y oh Y G G A A A G C G Deck the Halls G G A A A G C C JP-11-4-18 G G A A A C C A Chaen 202- G G A A A G C U Toad Hall G G A A A G C C Starry's Branches II G G A A A G C C Mat - Branches V1.1 (Submit. G G A A A G C C	
D Results viewer	C Synthesis results	
	October 1 Position in capillary electropherogram Remote lab	
E Design rule collection		
aldo's Loops & Stacks deivad's deivad's strategy	0,406 40 Ordening length 0.382 60	
	Ordering longth	

23

Problem of RNA Secondary Structure Prediction mobilis

Fig. 1.

The *E. coli* 5S rRNA secondary structure predictions and chemical modification. Heavy lines indicate base pairs in the known secondary structure (76, 88). (*A*) The predicted lowest free energy structure without experimental constraints. (*B*) The structure predicted with constraints from chemical modification data specified.

RNA Secondary Structure Algorithm mobilis

MOI platform for Bio

Machine Learning Simulator

mobiis

Secondary Structure Simulatior

Same size genome: about 3.1 billion bp One-to-one gene correspondence

High degree of genetic and physiologic similarity Identical organs, tissues, and cells

High rate of breeding

Cost of maintenance

The technique for which this year's Nobel Prize is awarded makes it possible to modify nearly all mouse genes. The most common alteration is to eliminate a specific gene, thus creating a knockout mouse. Genetically Modifiable → GEM → Mouse Models for Human Disease

Application Project – Mouse Modelling

Application Project - Mutations Induced by Engineered mobilis Nucleases

Error-free/low efficiency Homology-directed repair (eg. HR)

Error-prone/highly efficient Non-Homologous End-Joining (NHEJ)

Application Project - Generation of Knockout Mice Using ES Cells

mobiis

möbiis

Project of MOBIIS Machine Learning

Bio Finance Accelerator Nuclear Fusion

Problem of Yield Curve

Result of MOI Finance

mobiis

- 800days 예측 결과

ò

Period

Y

mobiis

Result of MOI Finance

- 800days Prediction

Result of MOI Finance

- 800days Prediction

36

Result of MOI Finance

- 800days Prediction

- 800days Prediction result by MSE

	VAR	MLP	LSTM
3M	0.87452	2.14428	0.00569
6M	1.14038	2.15576	0.00717
9M	1.40278	2.17548	0.01030
1Y	1.66920	2.21569	0.01385
1.5Y	2.15136	2.27984	0.01961
2Y	2.55786	2.3335	0.02251
2.5Y	2.90099	2.38392	0.02248
3Y	3.20976	2.45153	0.02075
4Y	3.40230	2.36073	0.02217
5Y	3.53483	2.32076	0.02004
7Y	3.48265	2.18180	0.02412
10Y	3.34092	2.07190	0.02722
20Y	3.20294	2.06010	0.02591

möbiis

Project of MOBIIS Machine Learning

Bio Finance <mark>Accelerator</mark> Nuclear Fusion

- 1. Project Name : Advanced Technology Center Project
- 2. Resource : MOBIIS (11 man) / PAL-XFEL (4 man)
- 3. Total Project Period : 2015/6/1 ~ 2020/5/31 (5 Year)
- 4. Current Period : 4th year
- 5. Business Expense : 50 million USD

Problem of Optimizing accelerator control möbiis

ITER

Very Difficult to optimize control parameter

- Facility ~km ↔ Electron Beam ~nm
- Operation ~day ↔ Pulse ~femto-sec.
- 1 million control parameter

Accelerator Demonstration System

Accelerator Demonstration System

Servers & Synchronization System

Accelerator System Architecture

	내용	Language	Coding Line
НМІ	CSS, MEDM etc.	Java, Python, Matlab, etc.	~60,000
Servers	Alarm, Archiving, Scan, Authentification, Olog, etc.	Java, MySQL, Glassfish, Tomcat, etc.	~60,000
IOC	Device Driver, Firmware	C, C++	~80,000
PLC	Siemens, Beckhoff, AB, etc.	Ladder, Structured Language	~30,000
Simulato r	Beam Dynamics, Device Emulation	C, C++, Matlab, etc.	~10,000

Accelerator System Simulator

Accelerator System Architecture

mobiis

möbiis

Project of MOBIIS Machine Learning

Bio Finance Accelerator <mark>Nuclear Fusion</mark>

Problem of CIS

> KSTAR field coil current feeder system (i.e., power supply)

✓ e.g., a PF coil case

Problem of CIS

> Why are we arguing over the form of coil positions?

✓ Let's see manufactures of tokamak field coils

FIG. 20. Details of the current feed of coil F7A.

Fig. 5. Pre-compression test of clamp for the EF4 winding model with dumn conductor.

Fig. 4. Double pancake of EF4 coil after thermal curing. 47/

Figure 4. A Nb_3Al D-shaped double layer coil for the demonstration of a react-and-wind technique.

Model of Problem

> Let's position the spiral or concentric wires based on the previous two papers

> Our opinion is that there are various type of filling thin wires inside the coil all the way from side to side.

