Complex interferometry principles and its potential in case of sufficiently stable diagnostic system

Milan KALAL

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Brehova 7, 115 19 Prague 1, Czech Republic E-mail: kalal@fjfi.cvut.cz

Abstract: Classical *interferometry* is one of the key methods among *active* optical diagnostics. Its more advanced version, which allows *recording* and subsequent *reconstruction* of up to *three* sets of data using just *one* data object—a *complex interferogram*—was developed in the past and became known as *complex interferometry*. Employing this diagnostics, not only the usual *phase shift*, but also the *amplitude* of the probing beam as well as the fringe *contrast* (leading directly to the phase shift *time derivative*) can be reconstructed *simultaneously* from such a complex interferogram. In this talk it will be demonstrated that even in the case of a not particularly good diagnostic beam *quality* these three quantities can be reconstructed with a high degree of *accuracy* provided both the *diagnostic beam* as well as the corresponding *optical line* feature a reasonable *stability*. Such stability requirement is important as in an ideal case *four* shots need to be gradually recorded (one by one): the *signal* complex interferogram, the *reference* interferogram as well as the *intensity* structures of the *signal* and *reference* part of the *diagnostic* beam.

Two xamples of complex interferograms obtained in experiments will be analyzed: the *laser produced plasma* (spark in the air) and the *high pressure gas jet*. Also, computer generated complex interferograms will be processed in order to demonstrate all the features of this technique. A general *ray-tracing* based *iterative* algorithm will be outlined in order to increase a *precision* of the *index of refraction spatial profile* taking into account *refraction* effects (omitted in the *Abel inversion*) and employing the *original* reconstructed *phase shift* and *amplitude*.