

School of Integrated Technology (SIT)

SIT SEMINAR

Energy Technology(ET)

- Culture Technology(CT)
- Intelligent Robotics Technology(RT)
- Common Subject

Thursday, September 7th, 2017, 2:30 PM. Room No. 109, Dasan bldg. 1st Floor

(Host: Prof. Kim Hyeong Jin / Language: Korean)

Electrochemistry for Various Compounds and Electrocatalytic Reactions at Nano-structured Electrodes Prof. Lee Chong Mok 이화여자대학교 화학·나노과학과

In the first part of this presentation, I will show my old results for the redox chemistry for 16- vs. 18-electron organometallic compounds [1,2]. The 16-electron mononulear complexes used are $[(\eta^5-Cp)Co(Cab^{S,S})]$ (Cab^{S,S'} = 1,2-S₂C₂B₁₀H₁₀-S,S'), $[(\eta^5-Cp^*)Co(Cab^{S,S'})]$, and $[(\eta^5-p-cymene)Ru(Cab^{S,S'})]$. We found that 16-electron complexes had a reversible 0/-1 reduction with a much less reversible 0/+1 oxidation; the reversibility of the latter processes

was improved upon the addition of a ligand (*i.e.*, it occurs via 18–electron complex, $[(\eta^5-Cp)Co(Cab^{S,S})(L)]$). However, the redox pattern of $[(\eta^5-Cp^*)Co(Cab^{S,S})(L)]$ were more complicated than that of $[(\eta^5-Cp)Co(Cab^{S,S})(L)]$ because of differences in electron–donating ability and structural bulkiness between Cp and Cp^{*}. We have observed elimination/recoordination of Lewis bases in the 18–electron complex, $[(\eta^5-Cp^*)Co(Cab^{S,S})(L)]$ (L = PMe₃, PEt₃, PHPh₂), depending on the cone angle of the ligands. In the second part of this presentation, I will show some results for the electrocatalytic reactions including electrochemical sensing at nano–structured electrode surfaces [3–6]. Nano–structured materials were prepared by wet synthesis including electrodepotion or by CVD synthesis combined with electrospinning

Integrated Institute of Technology (IIT)