양자 및 중력이론

Quantum and Gravity **Theory Group**

교수

fortoe@gist.ac.kr 062-715-3648 https://phys.gist.ac.kr/gctp/

Education

2009.08 Ph.D. in Physics, State Univ. of New York at Stony Brook

2000.02 M.S. in Physics, Sogang Univ.

1998.02 B.S. in Physics(2nd major in Math), Sogang Univ

Experience

2013.03 Professor, Department of Physics and Photon Science, GIST

2011.09 ~ Postdoctoral Associate, Univ. of Amsterdam, The Netherlands 2013.02

2009.10 ~ Postdoctoral Associate, Univ. of Southampton, UK 2011.08

Award and service

2014 GIST Award for Teaching Excellence

2018 Minister commendation (Ministry of Science and ICT)

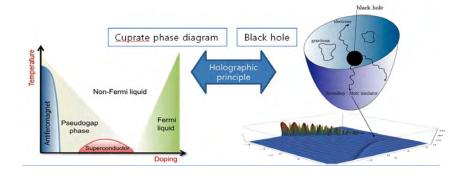
2021 GIST College Award for Teaching Excellence

2022 Prime minister commendation

2017 ~ 2020 Executive Editor, Journal of the Korean Physical Society

2020 ~ 2023 Dean of Student Affairs and Admissions, GIST

2020 ~ 2025 Council member and treasurer, Association of Asia Pacific Physical Societies


2021 ~ 2022 Executive director, Korean Physical Society

2023 ~ 2024 Council member and treasurer, Korean Physical Society

2023 ~ Chair, Department of Physics and Photon Science

연구실 소개

본 연구실에서는 장론, 중력, 끈 이론을 기반으로 연구할 수 있는 다양한 이론 물리의 문제 들을 다룬다. 최근의 주 연구 분야는 게이지 이론과 중력 이론의 이중성(gauge/gravity duality)이다. 강한 상호 작용의 현상인 color confinement, chiral symmetry breaking, high Tc superconductor, non-Fermi liquid는 오랫동안 풀리지 않은 난제들이다. 끈 이론으로부터 발전된 gauge/gravity duality는 강한 상호작용의 문제들을 공부하는 새로 운 도구로써, 이러한 난제들을 잘 정립된 중력과 블랙홀의 물리로 치환시켜 좀 더 다루기 쉬운 문제로 바꾸는 역 할을 한다. 이 방법론을 holographic principle 혹은 holography라고도 한다. 본 연구실에서는 holographic principle의 이론적 이해와 다양한 현실적인 응용을 함께 연구한다. 대표적인 주제들 중 하나로 블랙홀의 연구를 통한 고온 초전도체의 이해가 있다. (그림 참고) 또한 양자정보(Quantum information), 양자혼돈(Quantum chaos), 기계학습(Machine learning) 관련 연구도 진행하고 있다.

연구 성과

수행중인 주요 연구과제 (주요과제경력)

- · 한국연구재단 신진연구 (2014-2017)
- · BK21 PLUS 첨단광융합과학사업단 (2013-2020)
- · 한국연구재단 중견연구 (2017-2025)
- · 한-EU(ERC)연구자교류협력사업(2018)
- · 한-중(NSFC) 협력사업(2023~2025)

주요논문 (대표실적)

- · Worldsheet traversable wormholes [arxiv:2211.13262]
- · Holographic Axion Model: a simple gravitational tool for quantum matter [Sci.China Phys.Mech.Astron. 64 (2021)]
- · Comparison of holographic and field theoretic complexities for time dependent thermofield double states [JHEP 1802, 082]
- · Diffusion and Butterfly Velocity at Finite Density [JHEP 1706, 030]
- · Coherent/incoherent metal transition in a holographic model [JHEP 1412, 170]
- · Holographic d-wave superconductors [JHEP 1308, 112]
- · Holographic DC conductivities from the open string metric [JHEP 1211, 055]
- · Holographic description of the phase diagram of a chiral symmetry breaking gauge theory [JHEP 1003, 132]
- · The chiral model of Sakai-Sugimoto at finite baryon density [JHEP 0801, 002]

개설교과목

· 고급 일반물리학	· 우주와 인간의 역사
·일반물리학실험	·고급양자물리
·양자물리학	·일반상대론
· 핵 및 입자물리학	· 양자장론
· 초끈 이론	· 중력 물리학 특론
· 열 및 통계물리학	· 고급 양자정보 이론

융합연구 및 비전

융합연구 가능분야

응집물질물리+핵물리+양자정보

강상호 작용 일반이론 및 양자얽힘/양자정보 연구를 바탕으로 융합연구

우주론+입자물리+초끈이론

다양한 물질의 상태 연구에서 얻은 통찰을 바탕으로 우주론/입자물리/ 초끈이론의 융합연구

우주와 인간의 역사 (Big history)

자연과학적 연구와 통찰을 바탕으로 우주와 인류의 역사를 통합적으로 이해하는 융합연구

2024학년도 대학원 연구실 소개 37