GIST-연세대-세라믹기술원 공동연구팀, 3초에 900도 이상 치솟는 고온에서도 문제없는 고체 산화물 연료전지 기술 개발

- 고체 산화물 연료전지의 열응력 기반 설계로 세라믹의 낮은 열충격 저항성 극복
- 3초 안에 900°C 이상 온도에 도달하는 급격한 승온 속도에도 균열 및 파단 없고 100번 이상의 열충격 사이클에서도 높은 안정성 확인... 국제학술지《ACS Energy Letters》 게재
- 드론과 같은 모바일 장치의 보조 동력원 등 급속 구동이 필요한 발전장치에 활용 기대

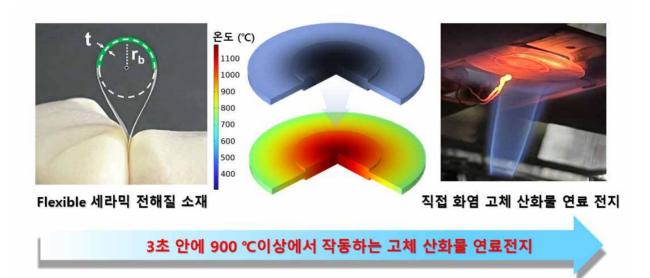
▲ (왼쪽부터) GIST 주종훈 교수, 연세대학교 홍종섭 교수, 한국세라믹기술원 신태호 박사

광주과학기술원(GIST, 총장 임기철)은 지구·환경공학부 주종훈 교수 연구팀이 연세 대학교 홍종섭 교수, 한국세라믹기술원 신태호 박사 연구팀과 함께 **3초 안에 900 ℃ 이상의 온도에서 작동하는 고체 산화물 연료전지 기술을 개발**했다고 밝혔다.

이번에 개발된 기술은 드론과 같은 **모바일 장치의 보조 동력원 등 급속 구동이 필 요한 발전장치에 활용**될 수 있을 것으로 기대된다.

세라믹 재료로 구성된 고체 산화물 연료전지는 **낮은 열전도도와 높은 탄성계수로** 인해 열 충격에 취약하다는 단점이 있다. 이에 따라 승온* 속도를 높일 수 없어 보통 4-6시간에 이르는 긴 작동 시간이 소요된다. 또한 빠른 열 사이클*에서는 성능이 불안정하다는 단점도 있다.

- * 승온(temperature rising): 점화 후(연소 개시 후) 온수 온도를 상용 온도까지 상승시키는 것.
- * **열사이클(thermal cycle)**: 열역학적 사이클을 의미하며, 열처리에 있어서 일정한 시간과 온도의 관계로서 물질을 가열·냉각시키는 것.


연구팀은 열응력*에 대한 이해를 기반으로 고체 산화물 연료전지의 전해질 소재 및 두께 특성을 설계하여 높은 열 충격에 대한 저항성을 확보한 연료전지를 제작하였다.

이를 위해 취성*이 강해 거의 휘어지지 않는 기존의 세라믹 기반 연료전지와 달리 높은 유연성을 갖도록 기계적으로 안정한 3 mol% 이트리아(Y₂O₃)가 도핑된 지르코 니아(ZrO₂)를 전해질 소재로 사용하고 전해질 두께를 약 20μm로 제어함으로써 작은 반경까지 휘어질 수 있는 전해질을 개발하였다.

- * **열응력(thermal stress)**: 물체의 열팽창, 열 수축이 억제된 상태에서 온도 변화가 일어나거나 열이 고르게 전달되지 않아 생기는 물체 내부에서의 변형력.
- * 취성: 외부에서 힘을 받았을 때 물체가 소성 변형을 거의 보이지 않고 파괴되는 현상.

이 같은 전해질 설계를 통해 연구팀이 제조한 세라믹 기반의 고체 산화물 연료전지는 열응력 시뮬레이션에서 급격한 온도 변화에도 셀이 파괴되지 않고 작동이 가능한 안정성을 보였다.

연구팀이 개발한 고체 산화물 연료전지는 3초 안에 900 ℃ 이상의 온도에 도달하는 승온 속도에도 균열 및 파단 없이 작동했으며, 100번 이상의 열충격 사이클에서도 높은 안정성을 보였다. 나아가 1초 안에 1000 ℃에 도달하는 극한의 구동 환경에서도 작동이 가능한 것을 확인하였다.

▲ 3초 안에 900 ℃이상에서 작동하는 고체 산화물 연료전지: 전해질 소재 및 두께특성을 설계하여 높은 열충격 저항성을 확보한 세라믹 연료 전지를 제조하였고 열응력 분포 시뮬레이션을 통해 3초 내에 고온작동이 가능함을 이론적으로 입증하였다.

주종훈 교수는 "이번 연구 성과로 세라믹의 급격한 온도 변화에 따른 열 충격 문제를 해결함으로써 고체 산화물 연료전지뿐 아니라 더 넓은 범위의 고온 세라믹 기반 전기화학 장치의 열 충격 저항성 향상 기술의 발전에 기여할 것으로 기대된다"고 말했다.

이번 연구는 한국연구재단 원천연구개발사업, 미래수소혁신기술개발사업, 선도연구센터사업의 지원을 받아 수행되었으며, 에너지 분야 저명 국제학술지《ACS 에너지레터스(ACS Energy Letters)》에 2024년 7월 24일 온라인 게재되었다.

논문의 주요 정보

1. 논문명, 저자정보

- 저널명 : ACS Energy Letter (IF= 19.3)
- 논문명 : Designing the Solid Oxide Electrochemical Cell for Superior Thermal Shock Resistance
- 저자 정보 : 주종훈(교신저자, GIST), 최수민(제1저자, GIST), 임장현 (공동1저자, 연세대학교), 홍종섭(공동교신저자, 연세대학교), 신태호 (공동교신저자, 한국세라믹기술원)...