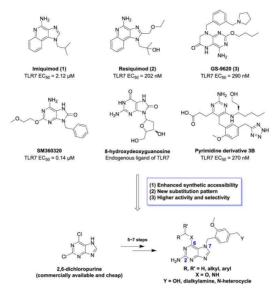
GIST-KRICT(화학연), 면역효과 증진 백신보조제 후보물질 개발

- 안진희 교수(GIST)·김미현 박사(KRICT) 공동연구팀, 톨유사수용체 TLR8 대비 효과 224배 높은 TLR7 작용제 발굴... 면역활동 활성화 통해 백신 효능 향상시켜
- 백신 보조제 및 강력한 면역 조절제로서 바이러스 감염이나 암과 같은 다양한 질병 치료의 새로운 가능성 열 것으로 기대... 국제학술지「Journal of Medicinal Chemistry」게재

▲ (왼쪽부터) GIST 화학과 안진희 교수(제이디 바이오사이언스 대표), KRICT 김미현 박사, GIST 화학과 김모건 석사과정생, KRICT 노경섭 박사과정생

광주과학기술원(GIST, 총장 임기철)은 화학과 안진희 교수와 한국화학연구원(KRICT) 김미현 박사 공동연구팀이 **백신의 효능을 월등히 향상시키는 백신보조제 후보물질을 개발**했다고 밝혔다.


이번 연구 성과는 **인플루엔자 또는 코로나와 같은 바이러스 감염으로 인한 질병의 치료를 위한 새로운 백신보조제 후보물질로 활용**될 수 있을 것으로 기대된다.

선천성 면역에 중요한 역할을 하는 막단백질(membrane protein)인 TLR(톨-유사수용체)은 인간의 경우 TLR1부터 TLR10까지 알려져 있다. 그중 'TLR7/8(Toll-like receptor 7/8)'작용제는 바이러스 감염, 자가면역 질환, 암과 같은 다양한 질병을 치료할 수 있는 다재다능한 면역 자극제이다.

따라서 선천 면역을 키울 수 있는 면역증강 방식 중 하나로 톨유사수용체(TLR7/8) 작용제가 개발되고 있지만 **면역 독성과 제형화에 한계**가 있고, TLR7과 TLR8은 면역 자극 과정과 시간 경과에 따른 반응에 큰 차이가 있기 때문에 각각의 수용체를 선택적으로 활성화하는 작용제의 개발이 필요하지만, 구조적 유사성으로 인해 개발이 매우 까다롭다는 한계가 있다.

연구팀은 기초연구를 바탕으로 **TLR7에만 작용하는 선택적 작용제를 개발**하고자 했다. 그 결과, TLR7에 대해 절반최대유효농도 $(EC_{50})^*$ 가 17.53 nM으로 TLR8에 대한 효과에 비해 **224배 높은 TLR7 작용제를 발굴**하는 데 성공했다.

* **절반최대유효농도(EC**₅₀): 최대 약효의 절반만큼의 약효를 나타내는 데 필요한 약물의 양을 뜻한다. 절반최대유효농도 값이 적으면 적을수록 동일한 약효를 나타내는 데 적은 양의 약물만 필요하며, 같은 종류의 약물이라도 EC_{50} 값이 적을수록 약효가 좋고 독성 등 부작용이 적을 가능성이 크다.

▲ 새로운 백신보조제 후보물질 개발: 기존의 TLR7 작용제들보다 높은 효과와 선택성을 갖는 새로운 후보물질을 도출함. EC_{50} = 17.53 nM로 기존의 물질들보다 더 강력하고 TLR7-선택성도 향상된 물질이 합성됨. 경제적으로 유리하고 구하기 쉬운 2,6-dichloropurine이라는 분자를 출발물질로 사용하여 경제적이고 효율적인 합성을 통해 새로운 물질을 도출함.

이 작용제는 마우스 모델의 대식세포에서 **염증성 사이토카인의 분비를 효과적으로** 자극하였으며, 생체 내에서 인플루엔자 A형 바이러스에 대한 비강 백신 효능을 증진시켰다.

또한 이 화합물은 체액성 및 점막 항체역가 평가 결과, 면역글로블린(IgG) 및 면역 글로블린 A(IgA)의 수치를 높여 **동종 및 이종 인플루엔자 바이러스 감염에 대해 보호 효과**를 나타내는 것으로 확인되었다.

이러한 발견은 연구팀이 개발한 TLR7 작용제가 **바이러스 감염을 예방하기 위한 백** 신 보조제로서 유망하며, 면역 억제 질환을 치료하기 위한 **강력한 면역 조절제로서** 장기간 활성을 지닐 가능성이 있음을 시사한다.

안진희 교수는 "이번 연구 성과인 TLR7 작용제가 **바이러스 감염을 예방하기 위한 백신 보조제로서 유망**하며, 면역 억제 질환을 치료하기 위한 강력한 면역 조절제로서 장기간 활성을 지닐 가능성이 있음을 시사한다"며 "바이러스 감염이나 암과 같은 다양한 질병을 치료할 수 있는 새로운 가능성을 열 것으로 기대한다"고 말했다.

GIST 안진희 교수(교신저자), KRICT 김미현 박사 (교신저자) 및 김모건 (GIST), 노경섭(KRICT) 학생이 수행한 이번 연구는 한국연구재단과 한국보건산업진흥원 등의 지원으로 수행되었으며, 관련 논문은 의약화학(medicinal chemistry) 분야의 권위 있는 국제학술지 'Journal of Medicinal Chemistry'에 5월 24일 게재되었다.

논문의 주요 정보

1. 논문명, 저자정보

- 저널명: Journal of Medicinal Chemistry (IF: 7.3, 2022년 기준)
- 논문명 :Design, Synthesis, and Biological Evaluation of New 2,6,7-Substituted
 Purine Derivatives as Toll-like Receptor 7 Agonists for Intranasal
 Vaccine Adjuvants
- 저자 정보 : 공동 제1저자: 김모건 (GIST 화학과), 노경섭(KRICT 감염병치료기술개발연구센터/충남대학교 신약전문대학원) 교신저자: 안진희 교수 (GIST 화학과), 김미현 박사 (KRICT 감염병치료기술개발연구센터/충남대학교 신약전문대학원)