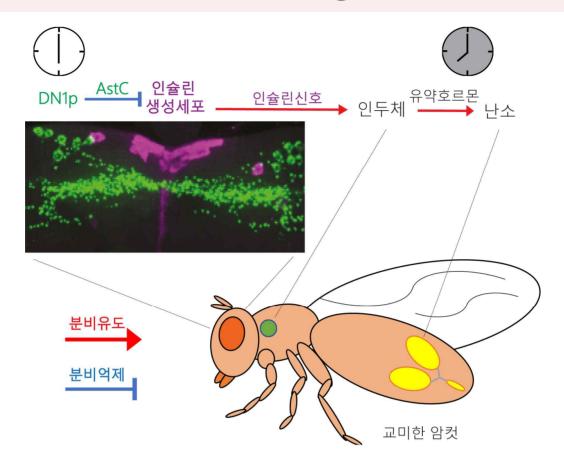
G I S	지스트(광주과학기술원) 보도자료 http://www.gist.ac.kr	
보도시점	배포 즉시 보도 부탁드립니다.	
배포일	2021.02.09.(화)	
보도자료	홍보팀 조동선 팀장	062-715-2061
담당	홍보팀 이나영 선임행정원	062-715-2062
자료 문의	생명과학부 김영준 교수	062-715-2492

지스트, 난자형성 일주기 리듬 메커니즘 규명

- 소마토스타틴계 신경내분비 생체시계가 난자형성 일주기 리듬 유도... 김영준 교수팀, 미국국립과학원회보(PNAS)에 논문 게재
- □ 지스트(광주과학기술원, 총장 김기선) 생명과학부 김영준 교수팀이 뇌 생체 시계가 방출하는 소마토스타틴계 신경펩타이드*가 난자형성** 일주기 리듬 을 생성하는 메커니즘을 규명하였다.
 - * 신경펩타이드(Neuropeptide): 신경단백질은 뉴런이 서로 통신하기 위해 이용하는 비교적 작은 크기의 단백질들을 일컫는다. 신경단백질은 음식물 섭취, 신진 대사, 생식, 사회적 행동, 학습 및 기억과 수면을 망라한 광범위한 뇌 기능에 관여한다고 알려져 있다.
 - ** 난자형성(oogenesis): 암컷 난소의 생식 줄기세포부터 성숙한 알을 생성하는 과 정으로, 노랑초파리 알의 생성은 14 단계의 과정으로 구분된다. 노랑초파리의 주 요 생식호르몬인 유약 호르몬은 단계7의 난자가 난황 축적을 시작하는 단계8의 난자로 성숙하도록 허용해 난자형성을 유도한다.
 - 연구팀은 신경 세포 활성 조절 기술과 유전자 발현 조작 기술을 적용하여 노랑초파리 뇌에 존재하는 약 10만개의 신경세포 중 6쌍의 생체시계 신경(후방등쪽신경*)이 뇌간 영역에 위치한 인슐린 성장호르몬 분비 세포의 활성을 주기적으로 억제하고, 이를 통해 난자 형성을 촉진하는 생식호르몬인 유약호르몬(Juvenile hormone, JH) 분비 리듬을 생성해 난자형성 일주기 리듬을 만들고 있음을 발견했다.

- * **후방등쪽신경(**posterior dorsal neuron 1, DN1p): 노랑초파리 뇌에서 보고된 150개의 생체시계신경망의 일부로 아침에 활성이 증가하는 M-신경의 영향으로 높은 아침 활성을 가지고 있다. 이전 연구에서 이 신경이 온도 및 빛의 영향을 받아 일주기 행동 리듬 변화를 유도하는 것이 보고되었다. 이번 연구에서는 해당 신경이 난자형성 리듬을 결정하는데 필수적인 생체시계임을 규명하였다.
- □ 동물들은 성공적인 생식을 위해 번식기를 최적화하도록 진화하여 대형 포유류는 6개월 이상의 임신기간을 갖고 가을에 번식하여 봄에 출산하 고, 임신 기간이 짧은 소형 포유류와 조류는 주로 봄에 번식하여 여름 에 출산한다. 동물의 생체시계는 계절에 따른 낮밤 길이 변화를 감지하 여 번식기를 결정하는데 중요한 기능을 할 것으로 추정되지만 암컷 번 식기를 결정하는 메커니즘은 알려지지 않았다.
 - 노랑초파리는 생체시계 연구의 중요한 모델 동물로, 노랑초파리에서 생체시계 유전자인 피어리어드(PERIOD)를 분리한 연구자들이 2017년 노벨생리의학 상을 수상하기도 했다. 노랑초파리 뇌에는 생체시계 기능을 수행하는 약 150개의 신경이 있어 노랑초파리의 행동 주기와 함께 호르몬 분비 리듬 등 다양한 생리작용의 일주기 리듬을 생성한다. 그러나 뇌 생체시계가 어떻게 번식기 형성에 중요한 난자형성 주기를 생성하는지는 밝혀진 바 없다.
- □ 연구팀은 DN1p 생체시계 신경이 주기적으로 방출하는 소마토스타틴계 신경펩타이드인 알라토스타틴-C*가 인슐린 성장호르몬 세포의 분비 활 성을 억제한다는 것을 최초로 발견했다.
 - * 소마토스타틴(Somatostatin)/ 알라토스타틴-C(Allatostatin-C) : 신경단백질의 일종 으로서 무척추동물 뿐 아니라 척추동물에서도 발견되는 등 진화적 보존도가 높 다. 척추동물에서는 성장호르몬 생성 및 분비를 억제하는 역할로 처음 보고되었 고, 생식호르몬의 분비를 조절하는 생식샘자극호르몬분비호르몬의 분비를 억제한 다고 알려져 있다.
 - 알라토스타틴-C는 포유류를 포함한 척추동물에서 생식호르몬의 분비를

조절하는 생식샘 자극 호르몬 분비 호르몬(Gonadotropin-releaseing hormone)의 분비를 억제한다고 알려진 소마토스타틴과 상동체로, 척추 동물에서도 생체시계가 방출하는 소마토스타틴이 생식호르몬의 분비 활성의 일주기를 생성할 것이라는 가설을 제시한다.


- □ 김영준 교수는 "이번 연구에서 최초로 발견한 알라토스타틴-C 방출 생체시계 신경과 생식호르몬 분비 및 난자형성 리듬과의 인과 관계는 아직 미지의 영역인 척추동물의 번식기를 결정하는 신경과 분자 메커니즘을 밝히는데 중요한 통찰을 제시할 것으로 기대한다"고 말했다.
- □ 본 연구는 지스트가 지원하는 생명의과학융합연구소사업, 한국연구재단이 지원하는 중견연구자지원사업, 한국초파리연구자원은행사업(Korea Drosophila Resource Center)의 지원을 받아 수행하였으며, 연구 성과는 자연과학 분야 세계적 권위지인 미국국립과학원회보(PNAS)에 2021년 1월 26일자 온라인으로 게재되었다. 〈끝〉

논문의 주요 내용

1. 논문명, 저자정보

- 저널명: PNAS (Proceedings of the National Academy of Sciences of the United States of America) ※ 세계 최고 권위의 미국국립과학원 회보(2019년 Impact Factor: 9.412)
- 논문명 : The neuropeptide allatostatin C from clock-associated DN1p neurons generates the circadian rhythm for oogenesis
- 저자 정보 : 김영준 (교신저자, 지스트 생명과학부 교수), Chen Zhang (제1저자, 지스트 생명과학부 박사과정 연구원)

그 림 설 명

[그림1] 노랑초파리 난자형성의 일주기를 생성하는 신경내분비 생체시계 규명

인슐린 성장호르몬 분비세포 (보라색)는 인슐린 신호를 통해 인두체에서 유약호르몬 (곤충 생식호르몬의 한 종류)의 분비를 유도, 난소의 난자형성을 촉진함. 생체시계 신경인 후방등쪽신경 DN1p이 알라토스타틴-C (AstC; 녹색)를 주기적으로 방출하면, 이는 인슐린 성장호르몬을 통한 유약호르몬 분비의 주기적 변화를 유도해 난자 형성 일주기를 생성함.