G I S	지스트(광주과학기술원) 보도자료 http://www.gist.ac.kr	
보도 일시	배포 즉시 보도 부탁드립니다.	
보도자료	홍보팀 김효정 팀장	062-715-2061 / 010-3644-0356
담당	홍보팀 이나영 선임행정원	062-715-2062 / 010-2008-2809
자료 문의	신소재공학부 이광희 교수	062-715-2325

초박막금속 투명전극을 이용해 감성 조명용 OLED 구조 개발

- 초박막금속 투명전극을 이용해 간단한 구조의 색변환 OLED 제작 기술 개발
- 지스트 이광희 교수 연구팀, 연구결과 광학분야 저명 국제학술지 <Advanced Optical Materials>에 논문 게재
- □ GIST(지스트, 총장 김기선) 신소재공학부 이광희 교수팀이 **초박막금속 투명** 전국을 이용해 간단한 구조의 감성 조명용 마이크로캐비티(Microcavity) OLED 구조*를 개발했다.
 - * 두 개의 반사층과 굴절율 차이가 크게 나는 한 개의 중간층으로 이루어진 구조로, 중간층의 두 께에 따라 빛의 파동이 보강간섭 또는 상쇄간섭을 일으킨다.
 - 이번 연구성과로 간단한 소자 구조로 다양한 색상의 감성조명을 제작해 실생활에서 접할 수 있을 것으로 기대된다.
- □ 마이크로캐비티 구조는 빛의 미세한 진동 효과(파동의 보강간섭, 상쇄간섭) 를 이용해 빛의 방출속도를 향상시키는 방법으로, OLED의 발광색을 변환하는 용도로 주로 사용된다. 하지만 기존의 마이크로캐비티 구조는 소자 외부에 별도로 제작해야 해 공정이 번거롭다는 단점이 있다.
 - 연구팀은 유연 투명 전극 제조업체인 엠에스웨이(주)*와 함께 초박막금속
 기반의 투명전극을 이용하여 별도의 마이크로캐비티 구조의 도입없이 OLED
 구조 자체로 마이크로캐비티 OLED 구조를 개발했다.
 - * 유기태양전지, 스마트필름, 스마트윈도우, OLED용 전극 맞춤 제조, MCU 반도체, 전장전문 임베디드 솔루션 개발 제조 업체

- □ 초박막금속 기반의 투명전극은 다른 투명전극과 달리, 투명전극의 역할과 마이크로캐비티 구조 중 일부인 반사층의 역할을 동시에 수행할 수 있다는 장점이 있다. 연구팀은 초박막금속 투명전극을 이용한 마이크로캐비티 OLED의 유기물 발광층 두께를 조절함으로써 효과적으로 OLED의 색좌표를 조절할 수 있음을 확인하였다.
- □ 이광희 교수는 "이번 성과는 초박막금속 투명전극 제작 기술과 OLED 제작 기술의 융합을 통해 최소한의 공정으로 효과적인 마이크로캐비티 구조를 실 현한 것으로, 산학협력을 통해 개발된 기술인 만큼 단기간 내에 감성 조명과 같은 차세대 전자소자에 적용될 수 있을 것으로 기대한다"고 말했다.
- □ 지스트 신소재공학부 이광희 교수와 차세대에너지연구소 강홍규 연구교수가 주도하고 박사과정 정소영 학생과 엠에스웨이 정수현 수석연구원이 주저자로 참여한 이번 연구는 한국연구재단이 지원한 기후변화대응기술사업, 글로벌연구실사업 및 산업통상자원부와 한국에너지기술평가원이 지원한 신재생에너지핵심기술사업, 산업통상자원부와 한국산업기술평가관리원이 지원한 소재부품기술개발사업, 지스트가 지원한 RISE 기관고유사업(GRI)의 일환으로 수행되었으며, 광학 분야 저명한 국제학술지 '어드밴스드 옵티컬 머테리얼즈(Advanced Optical Materials)'에 11월 13일자 게재되었다.

논문의 주요 내용

1. 논문명, 저자정보

- -저널명: Advanced Optical Materials (Impact factor: 7.125) 광학분야 상위 10% 이내 저널
- 논문명 : Controlling the Chromaticity of White Organic Light-Emitting Diodes Using a Microcavity Architecture
- 저자 정보: 이광희 교수(교신저자, GIST 신소재공학부), 강홍규연구교수(교신저자, GIST RISE), 정소영(공동1저자, GIST 신소재공학부 박사과정), 정수현 박사(공동1저자, MSWAY(주)수석연구원), 외 7명

용 어 설 명

- 마이크로캐비티(Microcavity) 구조: 두 개의 반사층과 굴절율 차이가 크게 나는 한 개의 중간층으로 이루어진 구조로, 중간층의 두께에 따라 빛의 파동이 보강간섭 또는 상쇄간섭을 일으킨다.
- 초박막금속 투명전극: 빛이 금속을 투과할 수 있는 약 10 나노미터의 두께를 형성하는 금속 박막 전극. 금속의 유연성과 전도성, 광 투과도를 확보할 수 있어 주목받는 유연투명전극 소재 중 하나이다.
- 색좌표: 인간의 색채인지에 대한 연구를 바탕으로 수학적으로 정의된 색 공간. 국제조명위원회(CIE)가 제정하였다.

그 림 설 명

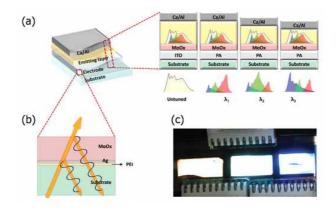


그림 1. 초박막금속 투명전극을 이용한 마이크로캐비티 OLED의 원리 모식도 및 실제 소자 사진

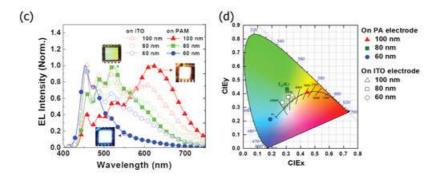


그림 2. 개발된 마이크로캐비티 OLED의 발광스펙트럼 및 색좌표